Blob


1 (define (memo-proc proc)
2 (let ((already-run? false) (result false))
3 (lambda ()
4 (if already-run?
5 result
6 (begin (set! already-run? true)
7 (set! result (proc))
8 result)))))
10 (define-syntax mydelay
11 (rsc-macro-transformer
12 (let ((xfmr
13 (lambda (exp)
14 `(memo-proc (lambda () ,exp)))))
15 (lambda (e r)
16 (apply xfmr (cdr e))))))
18 (define (myforce delayed-object)
19 (delayed-object))
21 (define-syntax cons-stream
22 (rsc-macro-transformer
23 (let ((xfmr (lambda (x y) `(cons ,x (mydelay ,y)))))
24 (lambda (e r)
25 (apply xfmr (cdr e))))))
27 (define (stream-car s)
28 (car s))
29 (define (stream-cdr s)
30 (myforce (cdr s)))
31 (define stream-null? null?)
32 (define the-empty-stream '())
34 (define (integers-starting-from n)
35 (cons-stream n (integers-starting-from (+ n 1))))
37 (define (stream-ref s n)
38 (if (= n 0)
39 (stream-car s)
40 (stream-ref (stream-cdr s) (- n 1))))
41 (define (stream-map proc . argstreams)
42 (if (stream-null? (car argstreams))
43 the-empty-stream
44 (cons-stream
45 (apply proc (map stream-car argstreams))
46 (apply stream-map (cons proc (map stream-cdr argstreams))))))
47 (define (stream-for-each proc s)
48 (if (stream-null? s)
49 'done
50 (begin (proc (stream-car s))
51 (stream-for-each proc (stream-cdr s)))))
53 (define (stream-enumerate-interval low high)
54 (if (> low high)
55 the-empty-stream
56 (cons-stream
57 low
58 (stream-enumerate-interval (+ low 1) high))))
59 (define (stream-filter pred s)
60 (if (stream-null? s)
61 the-empty-stream
62 (let ((scar (stream-car s)))
63 (if (pred scar)
64 (cons-stream scar (stream-filter pred (stream-cdr s)))
65 (stream-filter pred (stream-cdr s))))))
67 (define (display-stream s)
68 (stream-for-each display-line s))
69 (define (display-line x)
70 (newline)
71 (display x))
73 (define (test-case actual expected)
74 (newline)
75 (display "Actual: ")
76 (display actual)
77 (newline)
78 (display "Expected: ")
79 (display expected)
80 (newline))
82 (define (integers-starting-from n)
83 (cons-stream n (integers-starting-from (+ n 1))))
84 (define integers (integers-starting-from 1))
86 (define (divisible? x y) (= (remainder x y) 0))
87 (define no-sevens
88 (stream-filter (lambda (x) (not (divisible? x 7)))
89 integers))
91 (define (fibgen a b)
92 (cons-stream a (fibgen b (+ a b))))
93 (define fibs (fibgen 0 1))
95 (define (sieve s)
96 (cons-stream
97 (stream-car s)
98 (sieve (stream-filter
99 (lambda (x)
100 (not (divisible? x (stream-car s))))
101 (stream-cdr s)))))
103 ;; (define primes (sieve (integers-starting-from 2)))
104 ;; (test-case (stream-ref primes 25) 101)
106 (define ones (cons-stream 1 ones))
107 (define (add-streams s1 s2)
108 (stream-map + s1 s2))
109 (define integers (cons-stream 1 (add-streams ones integers)))
110 ;; (test-case (stream-ref integers 15) 16)
112 (define fibs
113 (cons-stream 0
114 (cons-stream 1
115 (add-streams (stream-cdr fibs)
116 fibs))))
118 (define (scale-stream stream factor)
119 (stream-map (lambda (x)
120 (* x factor))
121 stream))
122 (define double (cons-stream 1 (scale-stream double 2)))
124 (define primes
125 (cons-stream
127 (stream-filter prime? (integers-starting-from 3))))
128 (define (prime? n)
129 (define (iter ps)
130 (cond ((> (square (stream-car ps)) n) true)
131 ((divisible? n (stream-car ps)) false)
132 (else (iter (stream-cdr ps)))))
133 (iter primes))
135 (define (mul-streams s1 s2)
136 (stream-map * s1 s2))
138 (define (partial-sums s)
139 (define sums
140 (cons-stream (stream-car s)
141 (add-streams sums
142 (stream-cdr s))))
143 sums)
145 (define (merge s1 s2)
146 (cond ((stream-null? s1) s2)
147 ((stream-null? s2) s1)
148 (else
149 (let ((s1car (stream-car s1))
150 (s2car (stream-car s2)))
151 (cond ((< s1car s2car)
152 (cons-stream
153 s1car
154 (merge (stream-cdr s1) s2)))
155 ((> s1car s2car)
156 (cons-stream
157 s2car
158 (merge s1 (stream-cdr s2))))
159 (else
160 (cons-stream
161 s1car
162 (merge (stream-cdr s1) (stream-cdr s2)))))))))
164 (define (test-stream-list stream list)
165 (if (null? list)
166 'done
167 (begin (display "A: ")
168 (display (stream-car stream))
169 (display " -- ")
170 (display "E: ")
171 (display (car list))
172 (newline)
173 (test-stream-list (stream-cdr stream) (cdr list)))))
175 ;; Exercise 3.59. In section 2.5.3 we saw how to implement a polynomial arithmetic system representing polynomials as lists of terms. In a similar way, we can work with power series, such as
177 ;; represented as infinite streams. We will represent the series a0 + a1 x + a2 x2 + a3 x3 + ··· as the stream whose elements are the coefficients a0, a1, a2, a3, ....
179 ;; a. The integral of the series a0 + a1 x + a2 x2 + a3 x3 + ··· is the series
181 ;; where c is any constant. Define a procedure integrate-series that takes as input a stream a0, a1, a2, ... representing a power series and returns the stream a0, (1/2)a1, (1/3)a2, ... of coefficients of the non-constant terms of the integral of the series. (Since the result has no constant term, it doesn't represent a power series; when we use integrate-series, we will cons on the appropriate constant.)
183 (define (integrate-series a)
184 (stream-map / a integers))
186 ;; b. The function x ex is its own derivative. This implies that ex and the integral of ex are the same series, except for the constant term, which is e0 = 1. Accordingly, we can generate the series for ex as
188 (define exp-series
189 (cons-stream 1 (integrate-series exp-series)))
191 ;; Show how to generate the series for sine and cosine, starting from the facts that the derivative of sine is cosine and the derivative of cosine is the negative of sine:
193 (define cosine-series
194 (cons-stream
196 (integrate-series (stream-map - sine-series))))
197 (define sine-series
198 (cons-stream
200 (integrate-series cosine-series)))
202 Exercise 3.60. With power series represented as streams of coefficients as in exercise 3.59, adding series is implemented by add-streams. Complete the definition of the following procedure for multiplying series:
204 (define (mul-series s1 s2)
205 (cons-stream <??> (add-streams <??> <??>)))
207 You can test your procedure by verifying that sin2 x + cos2 x = 1, using the series from exercise 3.59.