Blob


1 (define (memo-proc proc)
2 (let ((already-run? false) (result false))
3 (lambda ()
4 (if already-run?
5 result
6 (begin (set! already-run? true)
7 (set! result (proc))
8 result)))))
10 (define-syntax mydelay
11 (rsc-macro-transformer
12 (let ((xfmr
13 (lambda (exp)
14 `(memo-proc (lambda () ,exp)))))
15 (lambda (e r)
16 (apply xfmr (cdr e))))))
18 (define (myforce delayed-object)
19 (delayed-object))
21 (define-syntax cons-stream
22 (rsc-macro-transformer
23 (let ((xfmr (lambda (x y) `(cons ,x (mydelay ,y)))))
24 (lambda (e r)
25 (apply xfmr (cdr e))))))
27 (define (stream-car s)
28 (car s))
29 (define (stream-cdr s)
30 (myforce (cdr s)))
31 (define stream-null? null?)
32 (define the-empty-stream '())
34 (define (integers-starting-from n)
35 (cons-stream n (integers-starting-from (+ n 1))))
37 (define (stream-ref s n)
38 (if (= n 0)
39 (stream-car s)
40 (stream-ref (stream-cdr s) (- n 1))))
41 (define (stream-map proc . argstreams)
42 (if (stream-null? (car argstreams))
43 the-empty-stream
44 (cons-stream
45 (apply proc (map stream-car argstreams))
46 (apply stream-map (cons proc (map stream-cdr argstreams))))))
47 (define (stream-for-each proc s)
48 (if (stream-null? s)
49 'done
50 (begin (proc (stream-car s))
51 (stream-for-each proc (stream-cdr s)))))
53 (define (stream-enumerate-interval low high)
54 (if (> low high)
55 the-empty-stream
56 (cons-stream
57 low
58 (stream-enumerate-interval (+ low 1) high))))
59 (define (stream-filter pred s)
60 (if (stream-null? s)
61 the-empty-stream
62 (let ((scar (stream-car s)))
63 (if (pred scar)
64 (cons-stream scar (stream-filter pred (stream-cdr s)))
65 (stream-filter pred (stream-cdr s))))))
67 (define (display-stream s)
68 (stream-for-each display-line s))
69 (define (display-line x)
70 (newline)
71 (display x))
73 (define (test-case actual expected)
74 (newline)
75 (display "Actual: ")
76 (display actual)
77 (newline)
78 (display "Expected: ")
79 (display expected)
80 (newline))
82 (define (integers-starting-from n)
83 (cons-stream n (integers-starting-from (+ n 1))))
84 (define integers (integers-starting-from 1))
86 (define (divisible? x y) (= (remainder x y) 0))
87 (define no-sevens
88 (stream-filter (lambda (x) (not (divisible? x 7)))
89 integers))
91 (define (fibgen a b)
92 (cons-stream a (fibgen b (+ a b))))
93 (define fibs (fibgen 0 1))
95 (define (sieve s)
96 (cons-stream
97 (stream-car s)
98 (sieve (stream-filter
99 (lambda (x)
100 (not (divisible? x (stream-car s))))
101 (stream-cdr s)))))
103 ;; (define primes (sieve (integers-starting-from 2)))
104 ;; (test-case (stream-ref primes 25) 101)
106 (define ones (cons-stream 1 ones))
107 (define (add-streams s1 s2)
108 (stream-map + s1 s2))
109 (define integers (cons-stream 1 (add-streams ones integers)))
110 ;; (test-case (stream-ref integers 15) 16)
112 (define fibs
113 (cons-stream 0
114 (cons-stream 1
115 (add-streams (stream-cdr fibs)
116 fibs))))
118 (define (scale-stream stream factor)
119 (stream-map (lambda (x)
120 (* x factor))
121 stream))
122 (define double (cons-stream 1 (scale-stream double 2)))
124 (define primes
125 (cons-stream
127 (stream-filter prime? (integers-starting-from 3))))
128 (define (prime? n)
129 (define (iter ps)
130 (cond ((> (square (stream-car ps)) n) true)
131 ((divisible? n (stream-car ps)) false)
132 (else (iter (stream-cdr ps)))))
133 (iter primes))
135 ;; (test-case (stream-ref primes 26) 103
137 ;; Exercise 3.54. Define a procedure mul-streams, analogous to add-streams, that produces the elementwise product of its two input streams. Use this together with the stream of integers to complete the following definition of the stream whose nth element (counting from 0) is n + 1 factorial:
139 (define (mul-streams s1 s2)
140 (stream-map * s1 s2))
142 (define factorials (cons-stream 1 (mul-streams factorials (stream-cdr integers))))
144 (test-case (stream-ref factorials 9) 3628800)