Blob


1 ;; Exercise 2.83. Suppose you are designing a generic arithmetic system for dealing with the tower of types shown in figure 2.25: integer, rational, real, complex. For each type (except complex), design a procedure that raises objects of that type one level in the tower. Show how to install a generic raise operation that will work for each type (except complex).
3 ;; we have to modify our packages so that we have 4 types: integer, rational, real, and complex
5 (define (attach-tag type-tag contents)
6 (if (or (eq? type-tag 'integer)
7 (eq? type-tag 'real))
8 contents
9 (cons type-tag contents)))
10 (define (type-tag datum)
11 (cond ((integer? datum) 'integer)
12 ((number? datum) 'real)
13 ((pair? datum) (car datum))
14 ((error "error -- invalid datum" datum))))
15 (define (contents datum)
16 (cond ((integer? datum) datum)
17 ((number? datum) (exact->inexact datum))
18 ((pair? datum) (cdr datum))
19 ((error "error -- invalid datum" datum))))
21 (define (make-table)
22 (define (assoc key records)
23 (cond ((null? records) false)
24 ((equal? key (caar records)) (car records))
25 (else (assoc key (cdr records)))))
26 (let ((local-table (list '*table*)))
27 (define (lookup key-1 key-2)
28 (let ((subtable (assoc key-1 (cdr local-table))))
29 (if subtable
30 (let ((record (assoc key-2 (cdr subtable))))
31 (if record
32 (cdr record)
33 false))
34 false)))
35 (define (insert! key-1 key-2 value)
36 (let ((subtable (assoc key-1 (cdr local-table))))
37 (if subtable
38 (let ((record (assoc key-2 (cdr subtable))))
39 (if record
40 (set-cdr! record value)
41 (set-cdr! subtable
42 (cons (cons key-2 value)
43 (cdr subtable)))))
44 (set-cdr! local-table
45 (cons (list key-1
46 (cons key-2 value))
47 (cdr local-table)))))
48 'ok)
49 (define (dispatch m)
50 (cond ((eq? m 'lookup-proc) lookup)
51 ((eq? m 'insert-proc!) insert!)
52 (else (error "Unknown operation -- TABLE" m))))
53 dispatch))
55 (define operation-table (make-table))
56 (define get (operation-table 'lookup-proc))
57 (define put (operation-table 'insert-proc!))
58 (define coercion-table (make-table))
59 (define get-coercion (coercion-table 'lookup-proc))
60 (define put-coercion (coercion-table 'insert-proc!))
62 (define (add x y) (apply-generic 'add x y))
63 (define (sub x y) (apply-generic 'sub x y))
64 (define (mul x y) (apply-generic 'mul x y))
65 (define (div x y) (apply-generic 'div x y))
66 (define (equ? x y) (apply-generic 'equ? x y))
67 (define (=zero? x) (apply-generic '=zero? x))
69 (define (install-integer-package)
70 (define (tag x) (attach-tag 'integer x))
71 (put 'add '(integer integer)
72 (lambda (x y) (tag (+ x y))))
73 (put 'sub '(integer integer)
74 (lambda (x y) (tag (- x y))))
75 (put 'mul '(integer integer)
76 (lambda (x y) (tag (* x y))))
77 (put 'div '(integer integer)
78 (lambda (x y) (tag (quotient x y))))
79 ;; (if (integer? (/ x y))
80 ;; (tag (/ x y))
81 ;; (div (raise (tag x))
82 ;; (raise (tag y))))))
83 ;; ;; we avoided calling make-rational to avoid dependencies
84 (put 'equ? '(integer integer) =)
85 (put '=zero? '(integer) zero?)
86 (put 'make 'integer
87 (lambda (n)
88 (if (integer? n)
89 (tag n)
90 (error "Not an integer" n))))
91 (put 'raise 'integer
92 (lambda (x) (make-rational x 1)))
93 'done)
95 (define (install-rational-package)
96 (define (gcd a b)
97 (if (= b 0)
98 a
99 (gcd b (remainder a b))))
100 (define (numer x) (car x))
101 (define (denom x) (cdr x))
102 (define (make-rat n d)
103 (if (not (and (integer? n) (integer? d)))
104 (error "Both numerator and denominator must be integers"
105 (list n d))
106 (let ((g (gcd n d)))
107 (cons (/ n g) (/ d g)))))
108 (define (add-rat x y)
109 (make-rat (+ (* (numer x) (denom y))
110 (* (numer y) (denom x)))
111 (* (denom x) (denom y))))
112 (define (sub-rat x y)
113 (make-rat (- (* (numer x) (denom y))
114 (* (numer y) (denom x)))
115 (* (denom x) (denom y))))
116 (define (mul-rat x y)
117 (make-rat (* (numer x) (numer y))
118 (* (denom x) (denom y))))
119 (define (div-rat x y)
120 (make-rat (* (numer x) (denom y))
121 (* (denom x) (numer y))))
122 (define (equ-rat? x y)
123 (and (= (numer x) (numer y))
124 (= (denom x) (denom y))))
125 (define (=zero-rat? x) (= (numer x) 0))
126 (define (tag x) (attach-tag 'rational x))
127 (put 'add '(rational rational)
128 (lambda (x y) (tag (add-rat x y))))
129 (put 'sub '(rational rational)
130 (lambda (x y) (tag (sub-rat x y))))
131 (put 'mul '(rational rational)
132 (lambda (x y) (tag (mul-rat x y))))
133 (put 'div '(rational rational)
134 (lambda (x y) (tag (div-rat x y))))
135 (put 'equ? '(rational rational) equ-rat?)
136 (put '=zero? '(rational) =zero-rat?)
137 (put 'make 'rational
138 (lambda (n d) (tag (make-rat n d))))
139 (put 'raise 'rational
140 (lambda (x) (make-real (/ (numer x) (denom x)))))
142 'done)
144 (define (install-real-package)
145 (define (tag x) (attach-tag 'real x))
146 (put 'add '(real real)
147 (lambda (x y) (tag (+ x y))))
148 (put 'sub '(real real)
149 (lambda (x y) (tag (- x y))))
150 (put 'mul '(real real)
151 (lambda (x y) (tag (* x y))))
152 (put 'div '(real real)
153 (lambda (x y) (tag (/ x y))))
154 (put 'equ? '(real real) =)
155 (put '=zero? '(real) zero?)
156 (put 'make 'real
157 (lambda (n)
158 (if (integer? n)
159 (tag (exact->inexact n))
160 (tag n))))
161 (put 'raise 'real (lambda (x) (make-complex-from-real-imag x 0)))
163 'done)
165 (define (install-complex-package)
166 (define (make-from-real-imag x y)
167 ((get 'make-from-real-imag 'rectangular) x y))
168 (define (make-from-mag-ang r a)
169 ((get 'make-from-mag-ang 'polar) r a))
171 (define (real-part z) (apply-generic 'real-part z))
172 (define (imag-part z) (apply-generic 'imag-part z))
173 (define (magnitude z) (apply-generic 'magnitude z))
174 (define (angle z) (apply-generic 'angle z))
176 ;; rectangular and polar representations...
178 (define (install-complex-rectangular)
179 (define (make-from-real-imag-rectangular x y)
180 (cons x y))
181 (define (make-from-mag-ang-rectangular r a)
182 (cons (* r (cos a)) (* r (sin a))))
183 (define (real-part z) (car z))
184 (define (imag-part z) (cdr z))
185 (define (magnitude z)
186 (sqrt (+ (square (real-part z))
187 (square (imag-part z)))))
188 (define (angle z) (atan (imag-part z) (real-part z)))
189 (define (tag x) (attach-tag 'rectangular x))
190 (put 'real-part '(rectangular) real-part)
191 (put 'imag-part '(rectangular) imag-part)
192 (put 'magnitude '(rectangular) magnitude)
193 (put 'angle '(rectangular) angle)
194 (put 'make-from-real-imag 'rectangular
195 (lambda (x y) (tag (make-from-real-imag-rectangular x y))))
196 (put 'make-from-mag-ang 'rectangular
197 (lambda (r a) (tag (make-from-mag-ang-rectangular r a))))
198 'done)
199 (define (install-complex-polar)
200 (define (make-from-real-imag-polar x y)
201 (cons (sqrt (+ (square x) (square y)))
202 (atan y x)))
203 (define (make-from-mag-ang-polar r a)
204 (cons r a))
205 (define (real-part z) (* (magnitude z) (cos (angle z))))
206 (define (imag-part z) (* (magnitude z) (sin (angle z))))
207 (define (magnitude z) (car z))
208 (define (angle z) (cdr z))
209 (define (tag x) (attach-tag 'polar x))
210 (put 'real-part '(polar) real-part)
211 (put 'imag-part '(polar) imag-part)
212 (put 'magnitude '(polar) magnitude)
213 (put 'angle '(polar) angle)
214 (put 'make-from-real-imag 'polar
215 (lambda (x y) (tag (make-from-real-imag-polar x y))))
216 (put 'make-from-mag-ang 'polar
217 (lambda (r a) (tag (make-from-mag-ang-polar r a))))
218 'done)
219 (install-complex-rectangular)
220 (install-complex-polar)
221 ;; end rectangular and polar representations
223 (define (add-complex z1 z2)
224 (make-from-real-imag (+ (real-part z1) (real-part z2))
225 (+ (imag-part z1) (imag-part z2))))
226 (define (sub-complex z1 z2)
227 (make-from-real-imag (- (real-part z1) (real-part z2))
228 (- (imag-part z1) (imag-part z2))))
229 (define (mul-complex z1 z2)
230 (make-from-mag-ang (* (magnitude z1) (magnitude z2))
231 (+ (angle z1) (angle z2))))
232 (define (div-complex z1 z2)
233 (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
234 (- (angle z1) (angle z2))))
235 (define (equ-complex? z1 z2)
236 (or (and (= (real-part z1) (real-part z2))
237 (= (imag-part z1) (imag-part z2))) ;; in case of rounding error
238 (and (= (magnitude z1) (magnitude z2))
239 (= (angle z1) (angle z2)))))
240 (define (=zero-complex? z)
241 (and (= (real-part z) 0)
242 (= (imag-part z) 0)))
244 (define (tag x) (attach-tag 'complex x))
245 (put 'add '(complex complex)
246 (lambda (z1 z2) (tag (add-complex z1 z2))))
247 (put 'sub '(complex complex)
248 (lambda (z1 z2) (tag (sub-complex z1 z2))))
249 (put 'mul '(complex complex)
250 (lambda (z1 z2) (tag (mul-complex z1 z2))))
251 (put 'div '(complex complex)
252 (lambda (z1 z2) (tag (div-complex z1 z2))))
253 (put 'equ? '(complex complex) equ-complex?)
254 (put '=zero? '(complex) =zero-complex?)
255 (put 'make-from-real-imag 'complex
256 (lambda (x y) (tag (make-from-real-imag x y))))
257 (put 'make-from-mag-ang 'complex
258 (lambda (r a) (tag (make-from-mag-ang r a))))
259 'done)
261 (define (make-integer n)
262 ((get 'make 'integer) n))
263 (define (make-rational n d)
264 ((get 'make 'rational) n d))
265 (define (make-real n)
266 ((get 'make 'real) n))
267 (define (make-complex-from-real-imag x y)
268 ((get 'make-from-real-imag 'complex) x y))
269 (define (make-complex-from-mag-ang r a)
270 ((get 'make-from-mag-ang 'complex) r a))
273 ;; install number packages
275 (install-integer-package)
276 (install-rational-package)
277 (install-real-package)
278 (install-complex-package)
281 (define (test-case actual expected)
282 (newline)
283 (display "Actual: ")
284 (display actual)
285 (newline)
286 (display "Expected: ")
287 (display expected)
288 (newline))
290 (test-case (equ? (add (make-integer 3) (make-integer 4))
291 (sub (make-integer 12) (make-integer 5))) #t)
292 (test-case (equ? (div (make-integer 24) (make-integer 4))
293 (mul (make-integer 2) (make-integer 3))) #t)
294 (test-case (equ? (add (make-integer 3) (make-integer 3))
295 (sub (make-integer 12) (make-integer 5))) #f)
296 (test-case (equ? (div (make-integer 24) (make-integer 4))
297 (mul (make-integer 2) (make-integer 2))) #f)
298 (test-case (=zero? (sub (div (make-integer 24) (make-integer 4))
299 (mul (make-integer 2) (make-integer 3)))) #t)
300 (test-case (=zero? (sub (div (make-integer 24) (make-integer 4))
301 (mul (make-integer 2) (make-integer 4)))) #f)
302 (test-case (make-integer 5) 5)
303 (test-case (type-tag (make-integer 5)) 'integer)
304 (test-case (type-tag (make-real 5)) 'integer) ;; automatically drops
305 (test-case (make-real 1.66667) 1.66667)
306 ;; (test-case (make-real (/ 5 3)) 1.66667) fails
308 (test-case (div (make-integer 3) (make-integer 4)) 0)
309 (test-case (=zero? (sub (make-rational 4 1)
310 (div (add (make-rational 1 2)
311 (make-rational 3 2))
312 (mul (make-rational 3 2)
313 (make-rational 2 6))))) #t)
314 (test-case (=zero? (sub (make-rational 4 1)
315 (div (add (make-rational 1 2)
316 (make-rational 3 2))
317 (mul (make-rational 3 2)
318 (make-rational 2 5))))) #f)
319 (test-case (equ? (add (make-rational 7 2)
320 (make-rational 2 4))
321 (div (add (make-rational 1 2)
322 (make-rational 3 2))
323 (mul (make-rational 3 2)
324 (make-rational 2 6)))) #t)
325 (test-case (equ? (add (make-rational 3 2)
326 (make-rational 2 4))
327 (div (add (make-rational 1 2)
328 (make-rational 3 2))
329 (mul (make-rational 3 2)
330 (make-rational 1 6)))) #f)
331 (test-case (equ? (div (make-rational 4 2)
332 (make-rational 1 3))
333 (sub (make-rational 9 1)
334 (mul (make-rational 4 1)
335 (make-rational 3 4)))) #t)
336 (test-case (equ? (div (make-rational 4 2)
337 (make-rational 1 3))
338 (sub (make-rational 9 1)
339 (mul (make-rational 4 1)
340 (make-rational 3 5)))) #f)
341 (test-case (equ? (add (make-complex-from-real-imag 3 4)
342 (make-complex-from-real-imag -5 -3))
343 '(complex rectangular -2 . 1))
344 #t)
345 (test-case (equ? (add (make-complex-from-real-imag 3 4.5)
346 (make-complex-from-real-imag -5 -3))
347 '(complex rectangular -2 . 1))
348 #f)
349 (test-case (=zero? (sub (add (make-complex-from-real-imag 3 4)
350 (make-complex-from-real-imag -5 -3))
351 '(complex rectangular -2 . 1)))
352 #t)
354 (test-case (=zero? (sub (add (make-complex-from-real-imag 3 5)
355 (make-complex-from-real-imag -5 -3))
356 '(complex rectangular -2 . 1)))
357 #f)
360 ;; (test-case (=zero? (sub (div (make-rational 4 3)
361 ;; (make-rational 1 3))
362 ;; (sub (make-rational 9 1)
363 ;; (mul (make-rational 4 1)
364 ;; (make-rational 3 4)))))
365 ;; #f)
366 ;; (test-case (=zero? (sub (add (make-complex-from-real-imag 3 5)
367 ;; (make-complex-from-real-imag -5 -3))
368 ;; '(complex rectangular -2 . 1)))
369 ;; #f)
371 ;; (define (scheme-number->complex n)
372 ;; (make-complex-from-real-imag (contents n) 0))
373 ;; (put-coercion 'scheme-number 'complex scheme-number->complex)
375 (define (apply-generic op . args)
376 (let ((type-tags (map type-tag args)))
377 (let ((proc (get op type-tags)))
378 (if proc
379 (apply proc (map contents args))
380 (if (= (length args) 2)
381 (let ((type1 (car type-tags))
382 (type2 (cadr type-tags))
383 (a1 (car args))
384 (a2 (cadr args)))
385 (let ((t1->t2 (get-coercion type1 type2))
386 (t2->t1 (get-coercion type2 type1)))
387 (cond (t1->t2
388 (apply-generic op (t1->t2 a1) a2))
389 (t2->t1
390 (apply-generic op a1 (t2->t1 a2)))
391 (else
392 (error "No method for these types"
393 (list op type-tags))))))
394 (error "No method for these types"
395 (list op type-tags)))))))
398 ;; (test-case (add (make-scheme-number 5)
399 ;; (make-complex-from-real-imag 3 2))
400 ;; '(complex rectangular 8 . 2))
401 ;; (test-case (add (make-complex-from-mag-ang 5 0.927295218)
402 ;; (make-scheme-number 2))
403 ;; '(complex rectangular 5 . 4))
406 (define (raise x) (apply-generic 'raise x))